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Abstract

Blockchain and smart contract technology are novel approaches to data and code
management that facilitate trusted computing by allowing for development in a dis-
tributed and decentralized manner. Testing smart contracts comes with its own set of
challenges which have not yet been fully identified and explored. Although existing
tools can identify and discover known vulnerabilities and their interactions on the
Ethereum blockchain through random search or symbolic execution, these tools gen-
erally do not produce test suites suitable for human oracles. In this paper, we present
AGSOLT (Automated Generator of Solidity Test Suites). We demonstrate its effi-
ciency by implementing two search algorithms to automatically generate test suites
for stand-alone Solidity smart contracts, taking into account some of the blockchain-
specific challenges. To test AGSOLT, we compared a random search algorithm and a
genetic algorithm on a set of 36 real-world smart contracts.We found that AGSOLT is
capable of achieving high branch coverage with both approaches and even discovered
some errors in some of the most popular Solidity smart contracts on Github.
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1 INTRODUCTION

Blockchain and smart contract technologies are novel approaches to data and code management. They facilitate trusted com-
puting by gracefully allowing for development in a distributed and decentralized manner. Smart Contracts are capsules of code,
similar to classes in object-oriented programming languages, such as Java and Python, which are deployed on distributed sys-
tems such as blockchains. Smart Contracts and blockchains have seen a major rise in popularity in recent years [1, 2]. In large
part, this is due to the inherent qualities of blockchains, such as immutability of data and ease of access to the data stored, which
renders extensive testing of critical importance, especially before code deployment. So far, research on testing smart contracts
has focused primarily on identifying smart contract- and blockchain vulnerabilities [1, 2, 3, 4], and applying basic techniques
such as fuzzing combined with automated oracles to detect these vulnerabilities [5]1. Automatically detecting vulnerabilities
can be a useful tool for smart contract developers, but often having access to a good test suite can prove even more useful to the
developer as argued below.
Previous studies have shown that the lack of such test suites is one of the major challenges hampering a successful technol-

ogy transfer from academics to industry [6, 7, 8]. However, as shown in the extensive investigation conducted by Zou et al. [9],

1See also Solfuzzer at https://solidity.readthedocs.io/en/develop/contributing.htm#running-the-fuzzer-via-afl
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creating test suites for smart contracts is not trivial, and several challenges arise during their implementation. First of all, 54.7%
of the interviewed developers report the lack of powerful tools, including testing tools, for blockchain-specific development.
Moreover, no mature testing framework and practical testing guidelines are available. Previous tools such as Oyente [2] and
ContractFuzzer [5] are undoubtedly promising, but they either do not produce test suites at all or very large test suites, which
are not human-readable. Furthermore, these tools do not consider all corner cases and scenarios, which is the most critical
challenge raised by the developers interviewed in Zou et al. [9]. Finally, they note that currently, no tool is available to measure
test suite quality of smart contracts. The only potential exception is represented by the tool developed in Wang et al. [10], who
follow a similar approach to ours. However, on the one hand, this tool is not publicly available. On the other hand, it does not
consider test suite size explicitly, which might result in unnecessarily long and complex test suites.

In this paper, first, we analyze some of the properties for designing a tool for automated test case generation for smart contracts.
We believe that these properties are also relevant to researchers who focus on bug detection with automated oracles. We find
that properties previously identified [11] for popular programming languages such as Java and C still hold (e.g., deciding on
quality metrics and covering corner cases), but additional qualities are desirable, which we describe below. Then, to handle
these challenges mentioned above, we present AGSOLT2 (Automated Generator of Solidity Test Suites), an automated test case
generation tool for unit testing for the smart contract programming language Solidity on the Ethereum blockchain. AGSolT
creates concise test suites for individual smart contracts while aiming to achieve a high branch coverage level. Existing literature
on reducing the size of test suites and test cases can be considered a good initial step for making more human-readable test
suites, which are more likely to be used in practice [12, 13]. Therefore, AGSOLT aims at creating smaller test suites, making
unit testing3 and regression testing easier [14, 15]. AGSOLT could lead the way to create higher-quality test suites for Solidity
smart contracts that exercise more in-depth corner cases and scenarios combining metaheuristic techniques for the automated
test-case generation with developers-provided oracles.
We equip AGSOLT with two common approaches for automated test case generation: (1) fuzzing, which is a random testing

approach, and (2) genetic algorithms, which are a search-based testing approach. On the one hand, fuzzing generates test cases
randomly; on the other hand, the genetic algorithms iteratively improve an initially random set of test cases through a search
guided by one or more objective functions. Previous research [16, 17] has shown that both approaches can be equally effective
when generating test suites, which makes them both valid approaches to an automated test case generation problem.
We conducted an empirical study on 36 real-world smart contracts to assess the effectiveness of AGSOLT and take a closer

look at how the two approaches compare for Solidity smart contracts. As far as the authors are aware, this is the first comparison
of the sort in the domain of smart contracts. We find that AGSOLT achieves good branch coverage on a variety of smart
contracts and can detect errors in some of the most popular smart contracts on Github. Both approaches show promise for future
investigation, although genetic algorithms might be slightly more suitable for achieving branch coverage on specific types of
smart contracts. Although neither approach is significantly faster than the other, our experiments seem to indicate that a guided
search that prefers smaller test cases might be better at reducing the time spent running the tests on a blockchain implementation.
In sum, this paper contributes to the state-of-the-art by:
1. Proposing a set of challenges specific to the blockchain domain that any automated test case generation tool should aim

to overcome.
2. IntroducingAGSOLT: an automated test case generation tool, capable of: (i) creating small, human-readable test suites that

are optimized for branch coverage; (ii) allowing for the implementation of different types of algorithms such as random-
testing and search-based-testing; (iii) being easily adapted to allow for different types of objectives such as mutation
coverage or statement coverage.

3. Providing the first comparison between a guided search and a random search in the domain of automated test case
generation for smart contracts.

The rest of this paper is organized as follows: Section 2 introduces the concept of smart contracts in the context of the Ethereum
blockchain and discusses existing ATG tools for these smart contracts. Section 3 formalizes the challenges that we identify for
creating an ATG tool for Smart contracts. In Section 4, the AGSOLT tool is introduced, and its workings are explained. Section 5

2https://github.com/AGSolT/AGSolT2021Submission
3In the domain of smart contracts, unit testing means testing individual smart contracts.

https://github.com/AGSolT/AGSolT2021Submission
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describes the design and the results of the empirical study we conducted to evaluate AGSOLT and compare the search-based and
random algorithms, while Section 6 discusses its threats to validity. Finally, Section 7 discusses the results of these experiments
and introduces potential future work.

2 BACKGROUND

This section provides an overview concerning blockchain, smart contracts, and their testing.

2.1 The Ethereum Blockchain and Smart Contracts
A blockchain [18, 19] can be viewed as a decentralized, distributed digital ledger: an ordered list of blocks, which themselves
contain an ordered list of transactions. New blocks are added by miners, who follow a consensus protocol that dictates the
rules of the blockchain, including how to add new data and deal with conflicting versions of the blockchain. On the Ethereum
blockchain, transactions can be used to transfer Ether (ETH) cryptocurrency from one address to another and deploy and interact
with smart contracts. Ether is also used to compensate the miner, who receives a small fee (called Gas) from the transaction
sender for registering a transaction on the blockchain. In addition to sending Ether, transactions can also be used to deploy- and
interact with smart contracts Because of its inner working, the Ethereum blockchain can store (almost) any data type, so long
as modifications are made in a transaction-based manner. Its creators have leveraged this property to store (compiled) pieces
of code, called smart contracts, on the blockchain, which can be used as follows. Each transaction has a “Data” field where a
transaction sender can store bytecode. When sending to a previously unused address, this bytecode can be interpreted by miners
that use the Ethereum Virtual Machine (EVM) to create new smart contracts whose bytecode is stored on the blockchain at the
new address.
After a contract has been deployed, the transactions sent to its address can invoke the execution of the code stored on the

blockchain by including the method to be invoked and any input parameters in the Data field of the transaction. The EVM
specifies how to alter the state of the system based on the Data field of the transaction and the code stored at the specified
address [20]. If a transaction is issued without a recognizable method in its “Data” field, a special function called FALLBACK is
invoked.
Since writing bytecode by hand is impractical, several high-level programming languages have been created, the most popular

of which is Solidity, which is inspired by Python, C++, and Javascript 4. Smart contracts in Solidity are similar to classes in
object-oriented programming and behave similarly to objects: the smart contract code serves as a blueprint to deploy many
instances on the blockchain, each with their address and internal state. Similarly, Solidity smart contracts have both public
functions and variables that can be accessed from outside the smart contract and private functions and variables that can only
be interacted with by the contract itself.

2.2 Smart Contract Weaknesses and Testing
Detecting vulnerabilities in smart contracts has been a hot research topic in recent years, especially since the infamous DAO
(Distributed Autonomous Organisation) attack in 2016, where roughly 60 million dollars worth of Ether was stolen because
of an unforeseen exploit in a published smart contract [21]. Due to specific blockchain properties, such as the immutability
of committed blocks and its distributed and decentralized nature5, the proper implementation of smart contracts is particularly
challenging. We discuss the most relevant literature below to illustrate this point.
Delmolino et al. [3] found that when teaching undergraduate students to create smart contracts, even simple implementations

lead to a multitude of non-trivial problems. Often, such problems do not prevent compilation but leave the contract vulnerable
to exploitation or unintended behaviors. Anderson et al. [1], Luu et al. [2], and Atzei et al. [4] investigated already published
contracts and highlighted that some of them present design flaws although already published on the blockchain. Recently, Zou
et al. [22] investigated the challenges related to smart contract testing and confirmed that almost half of all developers desired

4https://solidity.readthedocs.io/en/v0.5.8/
5Distributed in this context implies that anyone can access the bytecode of a smart contract, decentralized means that anyone can interact with a deployed contract.

https://solidity.readthedocs.io/en/v0.5.8/
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tools to verify code correctness. The above studies and the previously mentioned DAO attack motivated introducing new devel-
opment tools to develop and test safe smart contracts effectively6. Several tools have been put forward that we introduce briefly
below: SOLIDITY-COVERAGE 7 measures the quality of an existing test suite by checking whether branch coverage [23] has been
achieved (i.e., whether all possible paths through the code have been executed). SOLIDITYCHECK [24] checks Solidity code
for patterns that are known to lead to vulnerabilities and warns the user about them. Wu et al. [25] have designed 15 mutation
operators for Solidity smart contracts and use these to detect defects in 26 real-world smart contracts. OYENTE [2] creates a
control-flow graph for a given smart contract and uses symbolic execution to check its branch feasibility, (i.e., whether each part
of the code is theoretically reachable), as well as whether vulnerabilities are present. ADF-GA [26] uses control-flow-graphs
with dup-based covering criteria but only tests on a small set of smart contracts that only use integers and unsigned integers. Sim-
ilarly, Wang et al. [10] propose a tool propose a tool for creating branch-covering test suites that they test on 8 smart contracts. A
recent addition by Liu et. al. is MODCON, which relies on user-defined models to impose model testing on smart contract [27].
Finally, fuzzers [28] automatically create test cases for smart contracts by generating random (within a specified range) inputs
for contract functions to detect errors. The commercial ECHIDNA [29] tries to break user-defined invariants, while the academic
CONTRACTFUZZER [5] checks for both coding errors and the vulnerabilities mentioned by Luu et al. [2] and Bartoletti et al. [30].
When it comes to automated unit-testing of Solidity smart contracts on the Ethereum blockchain, each of the approaches

mentioned above comes with its limitations: (i) SOLIDITY-COVERAGE7, SOLIDITY CHECK [24], and OYENTE [2] do not produce
test suites; (ii) ECHIDNA [29] and MODCON [27] require the user to define invariants or models of their code, and (iii) ADF-
GA [26] and tool of Wang et al.are tested on small subsets of possible smart contracts and do not provide online code to be used
for further research. CONTRACTFUZZER [5] is perhaps the most complete approach out there because it creates test suites fully
automatically and works on a variety of smart contracts. However, the tool focuses on vulnerability detection through automated
oracles as opposed to creating test suites which can be used by human oracles. Additionally, existing literature has suggested
that random search approaches (e.g., fuzzing) run the serious risk of being too simplistic to fully capture corner cases in more
complex applications when compared to guided search approaches [17, 31].
For these reasons, we introduce AGSOLT (Automated Generation of Solidity Test Suites). This tool can easily leverage

different search algorithms to automatically generate test suites for Solidity smart contracts that aim to achieve branch coverage.
In the next sections, we first introduce the challenges that any tool or framework that sets out to achieve this goal will meet and
then discuss how AGSOLT aims to overcome these challenges. Finally, we demonstrate the effectiveness and efficiency of the
tool by experimenting on 36 real-world smart contracts.

3 SMART CONTRACT TESTING

This section introduces a set of properties that an effective automated test suite generation tool should possess. These proper-
ties were found through iterative experimentation, aiming at finding the corner cases not covered by the two search strategies
exploited by AGSOLT. In particular, we started implementing existing algorithms and looking at the branches that these were
unable to cover and identified the causes. We describe here, those blockchain-specific properties we found, which have not yet
been identified in the literature. We direct the reader towards existing literature [32, 33, 34, 35, 36] for more background on
the general challenges of test case generation, such as choosing objectives, objective functions and improving efficiency and
effectiveness. We divide these properties into three different types: transactional properties of blockchains and smart contracts,
properties of the blockchain on which the smart contract is deployed, and properties that define the way smart contracts interact
with other smart contracts. We argue that any tool for automated test-case generation should consider these properties.

3.1 Transaction Properties
The only way to change the state of a smart contract is by sending a transaction to the contracts’ address and invoke one of
its functions. Besides the function and parameter specification, every interaction with a smart contract has to provide a sender,
which is the address from which the transaction was sent, a value8, which is the amount of Ether sent in the transaction, and
an amount of gas, which is the fee that the sender has to pay to the miner for the computational power involved in adding

6https://github.com/ethereum/wiki/wiki/Safety#ethereum-contract-security-techniques-and-tips
7https://blog.colony.io/code-coverage-for-solidity-eecfa88668c2/
8Many blockchain interaction platforms do not require a value be specified, in which case this defaults to zero.

https://github.com/ethereum/wiki/wiki/Safety#ethereum-contract-security-techniques-and-tips
https://blog.colony.io/code-coverage-for-solidity-eecfa88668c2/
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this transaction to the block. These transaction properties can be accessed by the smart contract receiving the transaction and
influence its inner workings, affecting which branches are traversed.
1 pragma solidity 0.5.12;
2
3 contract Auction {
4 address payable public Seller;
5 address payable public Frontrunner;
6 uint public HighBid;
7 uint public CloseTime;
8
9 constructor(uint _CloseTime) payable public {
10 Seller = msg.sender;
11 Frontrunner = msg.sender;
12 HighBid = msg.value;
13 CloseTime = _CloseTime;
14 }
15
16 function Bid() payable external{
17 require(msg.value > HighBid);
18 Frontrunner.transfer(HighBid);
19 HighBid = msg.value;
20 Frontrunner = msg.sender;
21 }
22
23 function Claim() external{
24 require(block.timestamp > CloseTime);
25 // Implement ownership transfer
26 selfdestruct(Seller);
27 }}

Smart Contract 1: An example of Ethereum-specific properties.
As an illustration, Smart Contract 1 shows an example of a simple Auction on the Ethereum blockchain. When the contract is

initiated the constructor is executed, which instantiates the SELLER, FRONTRUNNER, HIGHBID and CLOSETIME variables. After-
wards anyone can make a Bid by calling the BID() function (lines 16-21). This function first checks if the transaction property
MSG.VALUE (the new bid) is higher than the current highest bid and if it is, it refunds the previous highest bidder (FRONTRUNNER)
and changes the Highest Bid and frontrunner based on the transaction information MSG.VALUE and MSG.SENDER respectively.
Any automated test-case generation tool for smart contracts should generate test-cases containing transactions from different

accounts to test sender-dependent functionality. Similarly, the tool should vary the amount of Ether send with a transaction and
evolve it either as if they were input variables or chosen for this purpose.

3.2 Blockchain Properties
Besides transaction properties, a smart contract has access to additional information from the blockchain environment on which
it is deployed, such as the address of the miner of the current block, the gas limit of the current block (i.e., the maximum amount
of computation in a block), the hash of any of the least 256 recently added blocks, and the time and block number of the current
block. Moreover, because each smart contract has an address, it has a balance in Ether associated with it, which affects its ability
to send Ether. An example of this is given by the CLAIM() function in Smart Contract 1 which compares the blockchain property
BLOCK.TIMESTAMP (which gives the time since the Unix epoch for this block) with the user-specified CLOSETIME before the
auction can be closed. If the specified time has been reached, the smart contract removes itself from the blockchain and sends its
entire balance to the seller. These blockchain properties can be manipulated (within certain limitations) by the test environments.
A useful test case generation tool should vary some or all of these blockchain properties for better testing while at the same
time respecting the logical rules of the blockchain, such as that block numbers and time must always increase between different
blocks.

3.3 Interactive Properties
Similarly to how Java classes can instantiate and interact with other classes, smart contracts on the Ethereum blockchain can
instantiate and send transactions, such as method invocations or Ether transfers, to other smart contracts. However, there are two
essential differences. First, smart contracts can send transactions to any address on the blockchain, allowing them to transfer
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Ether to a wallet or call functions of any smart contract on the same blockchain as long as that contracts address is passed as a
variable to the calling smart contract. A special case occurs when the contract sends a transaction to the so-called zero-address
(0X0), which causes the instantiation of a new smart contract. Second, smart contracts have an Ether balance that they can use
to send Ether alongside transactions to other smart contracts to invoke the contract’s functionality or purely transfer currency.
At line 18 of the BID() function in Smart Contract 1 the previous FRONTRUNNER is refunded the bid. If such FRONTRUNNER

is a smart contract, this transaction invokes the fallback function of that smart contract, which could, in turn, call one of the
functions in the AUCTION smart contract.
Automated Test Case Generation Tools for Smart Contracts should be aware of both existing addresses, as well as non-existing

addresses and the zero-address, which might cause errors in the smart contract. Additionally, they should anticipate interaction
with smart contracts outside the programmer’s control.

4 AGSOLT: AUTOMATED GENERATOR OF SOLIDITY TEST SUITES

ABI Analysis 
(4.1.1)

Random
Initialisation 

(4.2.1)

yes

No

Budget
consumed

or coverage
achieved?

Deploy & Run
Test Cases 

(4.2.3)

Extract Execution
Logs 

(4.2.4)

Evaluate Test
Cases & Update

Archive 
(4.2.5)

Selection 
(4.2.2)

Mutation 
(4.2.2)

Crossover 
(4.2.2)

Start

CFG Creation 
(4.1.2)

CDG Creation &
Trimming 

(4.1.3)

Genetic

Random

Algorithm?

Return Final  
Test Suite

Initialisation
Testing Loop

FIGURE 1 The flowchart of AGSOLT; each
step is explained in a corresponding section.

This section describes the design choices and algorithmic procedures that
make up the main workings of AGSOLT. Figure 1 shows its high-level work-
ings, which is composed of an initialization phase and a testing loop. In
the initialization phase, relevant properties of the smart contract(s) under
examination are extracted, which are required during the testing loop. Dur-
ing the testing loop, test cases are run on a blockchain implementation9 and
their performance is evaluated using the branch distance. AGSOLT is mostly
implemented in Python, except the instrumentation of the blockchain, which
is done through the WEB310 library in Javascript. Our ultimate goal is to
achieve branch coverage. This concept can be intuitively understood by view-
ing a piece of code as a graph with nodes that contain grouped statements
and edges that indicate jumps between these groups brought about by condi-
tions (such as if-else statements) that control which groups of statements are
executed and which are not. Sections 4.1.2 and 4.1.3 describe how AGSOLT
creates these graphs and gives some examples for further illustration. In
sections 4.2.1 and 4.2.2 we demonstrate the two implemented approaches
for creating test suites whose test cases traverse all (or as many as possible)
of these edges. AGSOLT considers each branch to be covered, as a sepa-
rate objective and tries to improve upon each objective simultaneously, thus
offering multi-objective optimization.

4.1 Initialization Phase
During the initialization phase, AGSOLT extracts several characteristics of
the smart contract under investigation to create the first generation of test
cases that can be improved in the testing loop.

4.1.1 ABI Analysis
When Solidity code is compiled into bytecode, an APPLICATION BINARY
INTERFACE (ABI) file is created. This file contains the basic information
necessary for test case generation (i.e., function names and input types).
Additionally, during this step, hard-coded values of the contract are scraped
to be used for seeding the method invocations. Seeding is a common tech-
nique used in automated test case generation, which involves including

9https://www.trufflesuite.com/ganache
10https://web3js.readthedocs.io

https://www.trufflesuite.com/ganache
https://web3js.readthedocs.io
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certain values with higher probability when randomly selecting variables for
input variables [37]. In AGSOLT whenever a random input variable or ETH
value or account is selected, first a check is performed whether one or more
hard-coded values of the corresponding type were present in the smart con-
tract (and consequently scraped). If there are such values, 50% of the time
a random scraped value is picked instead of a completely random value.
This allows AGSOLT to automatically leverage information inside the smart
contract to reach branch coverage quicker.

TABLE 1 EVM opcodes needed to generate test cases
Hex Opcode Stack Input Stack Ouput
56 JUMP dest
57 JUMPI dest, bool
5B JUMPDEST
10 LT a, b a < b
11 GT a, b a > b
12 SLT a, b a < b
13 SGT a, b a > b
14 EQ a, b a = b
15 ISZERO a a = 0

4.1.2 Control Flow Graph Extraction
To keep track of the branches to be traversed and those already covered, EVOSOL extracts the control dependency graph [38]
of the smart contract. To this end, first the Control Flow Graph (CFG) is distilled from the bytecode using the python
EVM_CFG_BUILDER library11. A conceptual explanation of how a CFG can be extracted from bytecode is given in our online
appendix12. The reason the CFG is created from the bytecode (as opposed to the Solidity code), is because it makes it possible to
extract the values that are on the stack when the EVM evaluates a predicate controlling a branch. These values are needed later
for deciding how close a test case is to satisfying a predicate, and consequently, traversing the branch it controls. Table 1 shows
the 9 opcodes which are relevant for identifying nodes and branches in the opcode column, their hex value as it appears in byte-
code as well as the argument(s) they consume from the stack and the output value they push onto the stack. The "JUMP"-opcode
is used to jump to a different part of the bytecode for execution (indicated by the destination value). The "JUMPI"-opcode works
similar to "JUMP" except that execution continues from the destination, only if the consumed bool is true, this is what creates
branches in the CFG. Finally the other opcodes shown in Table 1 correspond to the predicates that can control a branch; <, >,
== and ¬. Note that ≤, ≥ and ≠ can be represented with ¬ >, ¬ < and ¬ == respectively. For each branching node, AGSOLT
identifies the opcode that corresponds to the controlling predicate to compute the branch distance for the outgoing branches.

4.1.3 Control Dependency Graph Creation and Optimization
Some edges of the graph lead to superfluous nodes whose execution neither leads to or depends on any predicate, that could waste
part of the search budget. Therefore, they are eliminated by running the COMPACTIFYCFG algorithm shown in Algorithm 1
which uses the COMPACTIFY procedure in Algorithm 2. Finally, AGSOLT uses the algorithm proposed by Lengauer and Tar-
jan [39] to determine the control dependencies between the nodes and distil the Control Dependency Graph from the Control
FlowGraph. Considering some specific characteristics of the Ethereum blockchain, the graph can still be optimized by removing
some nodes that are not relevant for test case generation. These nodes and edges belong to the following patterns:

11https://github.com/crytic/evm_cfg_builder
12https://github.com/AGSolT/AGSolT2021Submission/tree/master/CFG_Creation_Appendix

https://github.com/crytic/evm_cfg_builder
https://github.com/AGSolT/AGSolT2021Submission/tree/master/CFG_Creation_Appendix
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Algorithm 1 COMPACTIFYCFG
Input:
N ⊳ The set of all nodes in the CFG.
Output:
N ′ ⊳ The set of nodes where nodes with superfluous branches have been merged.

1: procedure COMPACTIFYCFG
2: UN ←← N ⊳ Initialise the unmerged nodes.
3: MN ←← ∅ ⊳ Initialise the merged nodes.
4: while UN ≠ ∅ do
5: Node ←← any n ∈ UN | n.incoming_nodes ∩ UN = ∅
6: UN ←← UN − Node
7: MN ←← MN ∪ {Node}
8: UN, MN ←← Compactify(Node,UN,MN)
9: end while
10: return MN
11: end procedure

Algorithm 2 COMPACTIFY

Input:
Node ⊳ A node to be compactified.
UN ⊳ The set of unmerged nodes.
MN ⊳ The set of merged nodes.
Output:
UN′ ⊳ The updated set of unmerged nodes.
MN′ ⊳ The updated set of merged nodes.

1: procedure COMPACTIFY
2: if #Node.outgoing_nodes ≠ 1 then return UN, MN
3: else if #Node.incoming_nodes ≠ 1 then return UN, MN
4: else
5: nextNode ←← Node.outgoing_node
6: UN ←← UN − nextNode
7: MN ←← MN ∪ {nextNode}
8: Node ←← Node

⨁

nextNode
9: end if
10: return COMPACTIFY(Node, UN, MN)
11: end procedure

• Dispatcher Nodes and Edges. The ETHEREUM bytecode contains a dispatcher function that handles the transactions to
the smart contract. Since AGSOLT invokes all (public) methods, there is no need to calculate the branch distance for these
edges.

• Empty Fallback. An empty fallback function is initialized when the user does not explicitly define one. However, such a
function can be safely ignored as it does not change the semantics.

• State Variables. Public variables are accessed as functions through the contract dispatcher. Since calling these variables
does not help cover new branches, the corresponding nodes and edges in the CDG can be ignored.

An example of these patterns is shown in Fig. 2: The control dependency graph of smart contract 1 starts with dispatcher
nodes (even nodes), which are used to identify the method or state variable (starting at uneven nodes) that is called. If none
of the state variables or methods was passed in the transaction, the fallback function (starting at node 12) is invoked. Since no
fallback function was specified in smart contract 1, this method is empty, and neither invoking it nor any of the state variables
is particularly interesting for testing purposes. For that reason AGSOLT, removes the edges and nodes corresponding to the
dispatcher, state variables and empty fallback functions (shown dotted in Fig. 2 and creates new edges to the relevant methods
(BID and CLAIM) which are shown in bold in Fig. 2.
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• Payable Check.A SOLIDITY function can be declared as payable if it accepts transactions that have an associated ETHER
value. When a function is not declared as payable, the Ethereum compiler makes sure that the EVM reverts such trans-
actions. Since our goal is to test only the functionalities implemented by the developer, AGSOLT ignores such branches
and simply does not send ETHER to non-payable functions.

s

2

1

89

3

Other state variables

Seller

Frontrunner

Bid

Fallback

1011

12

Claim

FIGURE 2 CDG of the dispatcher func-
tion in Smart Contract. 1

As an example, Figure 3 shows the CDG of the Claim function reported
in Smart Contract 1. Before going from line 23 to 24, the EVM verifies if
the transaction has an ETHER value and, if it does, reverts the transaction.
AGSOLT trims the dashed nodes and edges and merges the start node with
node 3.

4.2 Testing Loop
During the testing loop, the actual search for optimal test cases is performed
until the budget is consumed. We first discuss the difference between a
random- and a search-based algorithm, followed by the general steps.

4.2.1 Random Initialisation of Test Cases
After extracting the required information, the population of test cases is ini-
tialized through a random algorithm. As in previous work, each test case is
a sequence of statements t = ⟨s1, s2, ..., sn⟩ [13, 40, 41]. AGSOLT relies on
two types of statements:

• Constructor statements are used to deploy smart contracts on the
blockchain. Such statements are used as the first statement s1 of each
test case t to ensure that a fresh instance of the smart contract is instan-
tiated for each test case on which the function statements can be called.
This statement type contains the information required to deploy an
instance of the relevant smart contract on the blockchain, including the
input variables required by the smart contract constructor and the trans-
action metadata, such as the amount of ETH send with the transaction
and the account from which the transaction is sent.

• Function statements are used to create transactions that invoke func-
tions in the deployed smart contracts. Indeed, the only way to interact
with a smart contract in Ethereum is by sending a transaction to its
address. All the statements, but the first (i.e., the constructor state-
ment), in a test case are function statements that are responsible for
traversing the branches of the smart contract. This statement type contains a reference to the function to cover, its input
variables, and the transaction metadata.

A set of test cases is initialized by creatingN random test cases, whereN is the population size i.e., the number of test cases
in any generation. When AGSOLT relies on the random search, test cases are generated by performing only this step. The search
keeps running through until either full branch coverage is achieved or the specified budget is consumed. At this point, the final
population (i.e., the archive) is presented as the solution. As shown in Figure 1, to improve the generated test cases, AGSOLT
can perform a guided search and a random search. For the former, we integrated DYNAMOSA (i.e., Many-Objective Sorting
Algorithm with Dynamic target selection), the genetic algorithm proposed by Panichella et al. [12].

4.2.2 Genetic Loop: the DynaMOSA Algorithm



10 S.W. Driessen ET AL

s

3

4 5

e

line 23

line 24

REVERTSelfDestruct

timestamp > CloseTime timestamp ≤ CloseTime

End of method

1
Value > 0 Value = 0

2 REVERT

FIGURE 3 CDG of the Claim function in Smart Con-
tract 1

Genetic Algorithms are inspired by biological evolution: they
work with a population of (candidate) solutions or chromo-
somes from which they derive a next generation of solutions
by iteratively applying evaluation, selection, crossover, and
mutation. Mitchell [32] and Lucken et al. [42] provide more
details on genetic algorithms for multi-objective problems.
DYNAMOSA [12] is a state-of-the-art algorithm specifically
designed for automated test case generation. It facilitates the cre-
ation of a small and effective test suite through multi-objective
optimization inspired by NSGA-II [34]. DynaMOSA has been
shown to significantly outperform other test case generation
algorithms (e.g., Whole-Suite Approach [13] and LIPS [35, 43])
in terms of branch and mutation coverage on an extensive set of
Java classes.
Fitness Function. The search algorithm is guided by the nor-

malized branch distance, as defined by Arcuri et al. [13]. The
normalized branch distance for a test case t and a branch b with
controlling predicate pb is given by:

d(t, b) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if t satisfies pb,
fpb (t,b)

fpb (t,b)+1
if pb has been reached but notsatisfied,

1 otherwise.
(1)

Here fp(t, b) is given by Korel’s objective function for relational predicates as shown in Table 2 [44]. Test cases with a smaller
normalized branch distance are closer to covering the corresponding branch and are thus more desirable.

TABLE 2 Relational predicates and objective functions [44]
Relational predicate fp

a > b b − a
a ≥ b b − a
a < b a − b
a ≤ b a − b
a = b abs(a − b)
a ≠ b −abs(a − b)

Because we aim at covering all branches simultaneously, the goal of the search becomes the following, similarly to what
previously formulated by Panichella et al. [12]:
Definition 1 (Fitness Function). Let B = {b1, b2, ..., bk} be the set of branches in a smart contract. Find a test suite T =
{t1, t2, ..., tn} consisting of non-dominated test cases t that simultaneously minimizes the fitness function for each branch b ∈ B,
i.e., minimizing the following k objective functions:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f1(t) = al(t, b1) + d(t, b1)
f2(t) = al(t, b2) + d(t, b2)
⋮

fk(t) = al(t, bk) + d(t, bk)

(2)

Here al(t, bi) is the approach level of t to bi (i.e., the number of predicates between the closest branch executed by t and bj)
and d(b, t) is the minimal normalized branch distance of t to branch b ∈ B as defined in Equation (1).
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Note that in this multi-objective approach a distance is calculated for each objective (branch) so that rather than using a single
distance to describe the fitness of a test case t, a distance vector, d⃗t = ⟨d(t, b1), d(t, b2), ..., d(t, bn)⟩, is used.
Selection Operation.After randomly initializing the first generation of test cases and measuring the branch distances, the test

cases are ranked using their Pareto fronts [34] as the primary criterion. Although inmulti-objective optimization having solutions
that make trade-offs between objectives is usually desirable, this is not the case for automated test case generation. Indeed, only
fully covered branches are relevant for the branch coverage, whereas a test that almost covers one (or more) uncovered branches
does not add any value to the final test suite. When ranking test cases in the first Pareto front, DYNAMOSA uses a preference
criterion that generalizes this idea by determining, for each branch b ∈ B, the non-dominated test cases closest to covering b
and (if there are more than one) the shortest one among those. More formally, as defined by Panichella et al. [12], the preference
criterion is the following:
Definition 2 (Preference Criterion.). Given a branch bi with corresponding objective function di = d(bi, t), a test case t is
preferred over another test case t′ (written as t ≺bi t

′) iff
di(t) < di(t′) OR di(t) = di(t′) ∧ size(t) < size(t′). (3)

where size is a function that gives the length (e.g., number of statements) of a given test case. Size is considered a secondary
criterion to prioritize solutions because shorter solutions reduce the oracle cost for humans [45, 13].
To compare the test cases that are not in the same Pareto front and are not preferred by the preference-criterion, the sub-vector-

distance-assignment algorithm introduced by Köppen and Yoshida [46] is used as a secondary selection criterion. Its goal is
selecting the most diverse possible subset of solutions from the last Pareto front for the next generation.
Crossover and Mutation Operations. We apply crossover and mutation on a test case level, following the approach sug-

gested by Arcuri et al. [47]. First, two parent test cases p1 and p2 are selected from the previous generation using tournament
selection [34]. Each parent is then cut into two parts, and the first part from p1 is combined with the second part of p2 and vice
versa two create two child test cases. Mutation is performed by randomly applying remove, change and insert operators. These
operators remove statements, slightly change the variables in the statements or insert new statements into test cases, respectively.

4.2.3 Deploy & Run Test Cases
Before evaluating and selecting the best test cases for the next generation, each test case runs on an Ethereum blockchain
environment. As mentioned in Section 4.2.1, each test case starts with a constructor statement, which is used to deploy a new
instance of the smart contract to the blockchain instance. By looking at the receipt of the transaction, AGSOLT instantiates the
new smart contract and extracts its address on the blockchain. Afterward, each method call is executed by sending a transaction
to the instance’s address. The hash-codes of the transactions, which identify each transaction on the blockchain, are stored for
the next step.

4.2.4 Extract Execution Logs
To compute the branch coverage for a test case as defined in Equation (1), two types of information are required: (i) the parts
of the code covered by the test case and (ii) the values that are on the stack when a branch-controlling predicate is evaluated.
AGSOLT extracts this information through a slightly modified functionality of the javascript WEB310 debug module called
getTransactionTrace. This module takes the transaction of a method call, recreates the blockchain state when the transaction was
executed, and writes the executed opcodes and the stack evolution in a file used for the next evaluations.

4.2.5 Evaluate Test Cases & Update Archive
After executing all the test cases and retrieving the necessary information, test cases are evaluated, as shown in Algorithm 3,
to produce the distance vector, test_scores, describing the test case’s fitness. For each test case, its distance to all branches is
initialized as infinite (line 2). Additionally, AGSOLT keeps track of all traversed edges (initialized at line 3) to calculate the
approach levels for those edges whose starting nodes are not reached during the execution. For every method call in the test
case, AGSOLT takes the corresponding list of executed opcodes and a list of lists containing all the values on the stack when
executing each opcode (line 4). The first node in the CDG of any method is always the same (line 5), while its end is only
reached when a node has no outgoing edges (line 6). Finding the next node using the FINDNEXTNODE (line 7) method means
looking at the first opcodes executed after leaving the current node and comparing them to the opcodes of the nodes with an
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Algorithm 3 Evaluate Test Case
Input:
metℎodCalls ⊳ The list of methods called by the test case
Opcodelists ⊳ The lists of opcodes executed by each Methodcall
Callstacklists ⊳ The lists of all the items on the stack when each opcode was executed
Edges = {E1, E2, ..., En} ⊳ The (ordered) list of Edges of the smart contract.
Nodes = {N1, N2, ..., Nm} ⊳ The (ordered) list of Nodes of the smart contract.
Result: a distance vector which contains the test case’s distance to each branch.

procedure SET DISTANCES
test_scores = [∞,∞, ...,∞] ⊳ Distance to each Edge
traversed = ∅ ⊳ The set of traversed edges
for each Metℎodcall, Opcodelist, Callstacklist do

5: curNode = startNode
while curNode ≠ endNode do

nextNode = FINDNEXTNODE(curNode, Opcodelist)
for each Ei ∈ Edges do

if Ei.startNode == curNode then
10: test_scores[i] = min(test_scores[i],

BRANCHDIST(Opcodelist, Callstacklist, Ei))
end if
if Ei.endNode == nextNode then

traversed = traversed
⋃

{Ei}15: end if
end for
curNode = nextNode

end while
end for

20: for each Ei ∈ Edges do
if test_scores[i] == ∞ then

test_scores[i] = APPROACHLEVEL(Ei, traversed)
end if

end for
25: end procedure

incoming edge from the current node. For each reached node, AGSOLT analyzes the outgoing edges (lines 8-9) and updates
the test_scores if the normalized branch distance from Equation (1) is smaller than the smallest distance found so far in the test
case (lines 10-11). After identifying all traversed edges, AGSOLT calculates for each not covered branch, the approach level:
i.e., the number of edges that would need to be traversed before the node controlling the branch can be reached (lines 19-23).
Finally, if a test case outperforms the best test-case found so far for a particular branch, it is stored in an archive, which keeps
track of the best test-case for each branch. It is important to note that (as can be seen in Fig. 1) both the random testing approach
and the genetic approach go through steps 4.2.3 through 4.2.5. The key difference between these approaches is that genetic
algorithms use selection, crossover, and mutation to create the next generation of test cases, while random testing creates a new
set of randomly initialized test cases.

4.3 Dealing with Blockchain Properties
To deal with the challenges that arise from transaction properties, blockchain properties, and interactive properties mentioned
in Section 3, AGSOLT provides configuration options that deal with the Ethereum and Solidity blockchain and smart contract
environment:

• Transaction Properties.AGSOLT extracts all the accounts of the blockchain environment and uses them both as senders
of transactions and as input variables whenever an address type is required. It keeps track of whether a function is payable
and, if so, it sends an amount (between a configurable maximum and minimum) of Ether with the transaction. Both
addresses and values can be evolved by the genetic algorithm as though they were input variables.

• Blockchain Properties. AGSOLT allows the user to include a PassBlocks or PassTime method call in test cases,
which instruct the blockchain environment to update the latest block number or the time rather than invoke smart contract
functions (assuming the chosen blockchain environment allows these manipulations). Both block number and time can
only increase, similarly to real-world Ethereum implementations. The miner configurations can be set in the blockchain
environment. Therefore, they are not manipulated in AGSOLT.
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• Interactive Properties. In addition to using the extracted accounts as input variables, AGSOLT has an option to include
specific non-existent accounts, which can trigger specific errors. This feature also allows the users to indicate a new con-
tract creation through the zero-address (0X0). Smart contracts can be deployed in the blockchain environment before the
test suite generation. Their address can be provided to AGSOLT as address input variables to test the interaction between
the contracts.This offers a simple, yet effective way, for users to create e.g., stubs with their own desired functionality and
test interaction properties. Additionally, the user can use this functionality to provide addresses that do not exist on the
blockchain as input variables for the contract functions to test the behavior of the contracts when the sent transactions fail.

4.4 Resulting Test Suites
At the end of the procedure shown in Fig. 1 AGSOLT outputs a text-file that gives information about the test suite and the
test process. In particular, it includes the number of branches found and covered, the number of iterations through the loop
before stopping, the total time spent testing, and the time spent running the tests on the blockchain. Afterward, the test cases
are provided as construct statements and method calls with relevant input- and transaction arguments. The test suite is easily
interpretable for humans and can easily be automatically transformed into input for the user’s preferred testing environment.
In addition to the test suite, AGSOLT writes out the same meta information of all contracts that were tested in a CSV file for

easy comparison.

5 EMPIRICAL EVALUATION

This section reports the empirical study that we performed to compare effectiveness, efficiency, and test case length of the two
algorithms for test case generation implemented in AGSOLT: namely, a fuzzer and DynaMOSA [12].

5.1 Data Collection
In an attempt to test on real-world smart contracts for our experiment, we scraped Github to obtain the most starred projects
containing Solidity files. We selected the smart contracts that adhered to the following criteria: (i) being stand-alone, meaning
they do not call other smart contracts during run-time (although they can inherit functionality from other smart contracts), (ii)
coming from different application domains, (iii) not having any user-defined inputs for their functions. We retrieved 36 Solidity
smart contracts from 17 different repositories, which is comparable to existing studies [26, 27]. To confirm that the contracts
were used in the real world, we manually inspected them, and we found that at least 17 of the smart contracts have also been
deployed on either the main Ethereum network or on a test network. Table 3 shows the characteristics of the identified smart con-
tracts, including their domain, whether they were found online, their number of statements, and number of branches in its CDG.
Additionally, Table 3 highlights presence the blockchain-specific qualities that AGSOLT can handle. The sender dependence
and value dependence indicate whether functionality of the smart contract depends on the transaction sender and transaction
value and fall into the transaction properties discussed in Section 3 and Section 4.3. Block dependence and time dependence
indicate whether the contract relies on block number or the blockchain time for its functionality, which falls into the blockchain
properties discussed in Section 3 and Section 4.3. Finally account as variables, non-existing account dependence and zero
account dependence indicate the presence of interaction within the smart contract that would depend on the accounts passed
as input variables and fall into the interaction properties discussed in Section 3 and Section 4.3. The entire data set, including
the addresses of the deployed smart contracts, along with the tool and the results, is available in our online appendix2. The
smart contracts are spread out over ten application domains. They vary in terms of the number of source code statements and
branches in the CDG of the corresponding bytecode. We found that the transaction properties we identified occurred most fre-
quently (28 sender dependencies and 26 value dependencies), followed by the interaction properties (29 variable dependencies,
four non-existent account dependencies, and two zero-account dependencies). Interestingly only three smart contracts exhib-
ited blockchain properties (two time dependencies and one block dependency). This characteristic is feasible because relying
on block and time information is inconsistent (each miner might have different information), and developers should rely on it
as little as possible. Importantly only four smart contracts do not rely on any of the properties we identified. Since the presence
of these dependencies was not part of the search protocol, this demonstrates the necessity for our tool (and others like it) to
consider the blockchain-specific properties identified in Section 3.
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TABLE 3 The smart contracts used for evaluating AGSOLT and their characteristics. Comm. stands for the "communication"
domain.

Contract Name Domain # State-
ments

# Bran-
ches Found Sender

Dep.
Value
Dep.

Acc. as
Vars

NE Acc.
Dep.

Zero Acc.
Dep.

Block
Dep.

Time
Dep.

AddressBook Comm. 19 54 7 3 7 3 7 7 7 7

array-utils Storage 144 257 7 7 3 7 7 7 7 7

BadAuction Token 7 7 7 3 3 7 7 7 7 7

BasicToken Token 11 8 7 3 3 3 3 7 7 7

Casino Exploit 38 29 7 3 3 7 7 7 7 3

DateTime Time 90 143 7 7 7 7 7 7 7 7

DosAuction Exploit 7 7 3 3 3 7 7 7 7 7

EIP20Standard-
Token Token 24 13 3 3 3 3 7 7 7 7

EasyPayAnd-
WithDraw Token 7 8 7 3 3 7 7 7 7 7

EtherBank Exploit 13 17 7 3 3 3 7 7 7 7

EzToken Token 31 11 3 3 3 3 7 7 7 7

FixedSupplyToken Token 39 22 3 3 3 3 7 7 7 7

FundRaising Finance 23 21 7 3 3 7 7 7 7 3

Gift_1_ETH Exploit 18 18 3 7 3 7 7 7 7 7

Greeter Comm. 15 81 7 7 7 7 7 7 7 7

Greeter2 Comm. 13 60 7 7 7 7 7 7 7 7

Greeter3 Comm. 15 73 7 7 7 7 7 7 7 7

GuardCheck Finance 10 14 7 3 3 3 7 3 7 7

GuessTheNum-
berChallenge Exploit 6 8 7 7 3 7 7 7 7 7

Identity Identity 53 131 7 3 3 7 7 7 7 7

IdentityManager Identity 49 90 3 3 7 3 7 7 7 7

LotteryFor10 Betting 45 44 3 3 3 7 7 7 3 7

LotteryMultiple-
Winners Betting 31 45 7 3 3 7 7 7 7 7

MultiSigWallet (1) Wallet 56 70 7 3 3 3 3 7 7 7

MultiSigWallet (2) Wallet 59 83 7 3 3 3 3 7 7 7

MyAdvancedToken Token 53 3 3 3 3 3 7 7 7 7

OpenAddressLottery Betting 30 34 3 3 3 3 7 7 7 7

PermissionGroups Identity 58 86 3 3 7 3 7 3 7 7

Prover Comm. 27 17 3 3 7 3 7 7 7 7

Randomness Betting 22 17 7 3 7 7 7 7 7 7

Reentrance Exploit 9 14 3 3 3 3 7 7 7 7

Rubixi Exploit 56 102 3 3 3 3 7 7 7 7

SecureAuction Finance 11 6 3 3 3 7 7 7 7 7

TestDateTime Time 160 252 3 7 7 7 7 7 7 7

theRun Exploit 62 83 3 3 3 3 3 7 7 7

VulnerableTwoStep Exploit 11 10 7 3 3 7 7 7 7 7

5.2 AGSOLT Evaluation
To evaluate the effectiveness of AGSOLT as well as compare the effectiveness of our random search and guided search, we
perform an empirical study steered by the following research questions.

• RQ1 (Effectiveness). Which is the coverage of the genetic algorithm approach compared to the random approach when
generating test cases for Solidity smart contracts?

• RQ2 (Efficiency).Which is the execution time of the genetic algorithm approach compared to the random approach when
generating test cases for Solidity smart contracts?
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• RQ3 (Test Case Length). Which is the average number of statements in a test case for the genetic algorithm approach
compared to the random approach when generating test cases for Solidity smart contracts?

The first two research questions are selected because they give insight into the performance of the two approaches as well as
the general performance of AGSOLT. The third research question is included because creating small, “human-readable” test
cases is a secondary objective of DYNAMOSA [12].
To answer the research questions, we implement both the random search and DYNAMOSA-based guided search that were

described in sections 4.2.1 and 4.2.2 and run AGSOLT for each approach and for each smart contract in Table 3 to generate a test
suite until either i) full branch coverage is achieved or ii) the tool has gone back to the start of the search loop in Figure 1 100
times. We repeated the process ten times for each smart contract to account for the inherent randomness of both approaches. Our
parameter settings for the genetic algorithm are the same as those used for evaluating DYNAMOSA [12], and the configurable
options discussed in Section 4.3 were appropriately set whenever possible to constrain the search. In order to fairly compare
the approaches and keeping with the above settings, we set the population size to 50 individuals for both approaches; therefore,
the search budget consists of 5,000 test case evaluations or up to 200,000 method evaluations per smart contract. As previously
mentioned, we used GANACHE to simulate the Ethereum blockchain, as it is much faster than a decentralized blockchain imple-
mentation. The execution was run on virtual machines running Ubuntu server with a RAMof 16GB. For each generated test case,
we measure its branch coverage, the time spent running tests on the blockchain, the total time, and the number of statements.
Additionally, we compute the statistical significance of the difference between the two approaches using Wilcoxon’s test [48]
with a p-value threshold of 0.05 as well as the Vargha-Delaney statistic (Â12) [49] which is used to measure the magnitude of
the difference.

5.3 Analysis of the Results
First, all tables miss the results for three contracts, which returned an error.We found that invoking some functions of DATETIME
and IDENTITY could cost more Gas than the block limit and that calling a function in IDENTITY with AGSOLT can produce an
out of bounds error; therefore, we excluded them from the performance evaluation. However, we included these smart contracts
in Table 3 since they demonstrate the usefulness of AGSOLT as a tool capable of detecting errors in popular real-world smart
contracts.

5.3.1 RQ 1. (Effectiveness)
Table 4 shows the mean branch coverage in terms of branches covered and the percentage of total branches covered for both
DYNAMOSA [12] and the fuzzer approach. Overall, both approaches achieved good branch coverage, Table 5 shows that
DYNAMOSA managed to achieve full branch coverage for 21, while the fuzzer achieves full branch coverage for 18 smart
contracts. Full branch coverage could not be achieved for several reasons. For example, some branches may be infeasible, or
AGSOLT settings should be tweaked further. For example, we noted that the “LotteryFor10” contract had one branch that was
consistently not covered and found that this was because longer test cases (containing more than 40 statements) were necessary
to cover this branch. One notable outlier on which both approaches perform poorly is the “theRun” contract, which relies on the
block hash to simulate randomness, which is something that cannot be manipulated by AGSOLT.
Table 4 also reports p-values from a Wilcoxon test as well as the Â12 and effect size from a Vargha-Delaney test comparing

the distributions of the achieved branch coverages (in percentages) by applying the genetic and fuzzing approach each ten times
per smart contract. Looking closer at the p-values and Varghay-Delaney statistic, we see that DYNAMOSA achieves signifi-
cantly higher coverage (p ≤ 0.05) than the fuzzer in six cases, each with large effect size. In contrast, the fuzzer significantly
outperformed DYNAMOSA only once, also with large effect sizes. Additionally, when DYNAMOSA outperforms the fuzzer,
the average branch coverage increases between 3% and 25%, while the fuzzer only achieves a 2% (2 branches) increase. We
manually investigated those smart contracts for which the guided search could achieve full branch coverage, while the random
search could not. In every case, we found that the branches not reached by the random search resulted from nested if-else
statements and assertions. This observation is in line with existing literature [17, 31] that suggests that genetic algorithms could
prove beneficial when compared to random testing approach for exercising deeper functionalities in code.
The genetic algorithm (i.e., DYNAMOSA) significantly outperformed the fuzzing algorithm when generating test
cases for six Solidity smart contracts, whereas the opposite happened only once.
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TABLE 4 Comparison for the achieved branch coverage for the genetic search algorithm and the fuzzing algorithm.

Name # Branches Mean Cov. Gen. Mean Cov. Fuz. p-val Â12 Effect Size
# % # %

AddressBook 54 54.0 1.00 54.0 1.00 1.00 0.50 negligible
BadAuction 7 7.00 1.00 7.00 1.00 1.00 0.50 negligible
BasicToken 8 8.00 1.00 8.00 1.00 1.00 0.50 negligible
Casino 29 25.0 0.86 24.1 0.83 0.03 0.75 large
DosAuction 7 7.00 1.00 7.00 1.00 1.00 0.50 negligible
EIP20StandardToken 13 13.0 1.00 13.0 1.00 1.00 0.50 negligible
EasyPayAndWithDraw 8 8.0 1.00 6.00 0.75 0.00 1.00 large
EtherBank 17 14.0 0.82 14.0 0.82 1.00 0.50 negligible
EzToken 11 11.0 1.00 11.0 1.00 1.00 0.50 negligible
FixedSupplyToken 22 21.7 0.99 22.0 1.00 0.08 0.35 small
FundRaising 21 21.0 1.00 21.0 1.00 1.00 0.50 negligible
Gift_1_ETH 18 14.0 0.78 14.0 0.78 1.00 0.50 negligible
Greeter 81 81.0 1.00 81.0 1.00 1.00 0.50 negligible
Greeter2 60 60.0 1.00 60.0 1.00 1.00 0.50 negligible
Greeter3 73 73.0 1.00 73.0 1.00 1.00 0.50 negligible
GuardCheck 14 14.0 1.00 14.0 1.00 1.00 0.50 negligible
GuessTheNumberChallenge 8 8.00 1.00 8.00 1.00 1.00 0.50 negligible
IdentityManager 90 73.6 0.82 55.0 0.61 0.00 1.00 large
LotteryFor10 44 43.0 0.98 43.0 0.98 1.00 0.50 negligible
LotteryMultipleWinners 45 44.7 0.99 43.4 0.96 0.05 0.78 large
MultiSigWallet (1) 70 62.0 0.89 62.7 0.90 0.44 0.33 medium
MultiSigWallet (2) 83 76.2 0.92 74.5 0.90 0.33 0.69 medium
MyAdvancedToken 3 3.00 1.00 3.00 1.00 1.00 0.50 negligible
OpenAddressLottery 34 32.0 0.94 32.0 0.94 1.00 0.50 negligible
PermissionGroups 86 85.7 0.997 83.7 0.97 0.01 0.96 large
Prover 17 17.0 1.00 17.0 1.00 1.00 0.50 negligible
Randomness 17 16.0 0.94 16.0 0.94 1.00 0.50 negligible
Reentrance 14 13.0 0.93 13.0 0.93 1.00 0.50 negligible
Rubixi 102 67.0 0.66 69.0 0.68 0.00 0.05 large
SecureAuction 6 6.00 1.00 6.00 1.00 1.00 0.50 negligible
TestDateTime 252 243 0.96 240 0.95 0.02 0.75 large
theRun 83 34.0 0.41 34.0 0.41 1.00 0.50 negligible
VulnerableTwoStep 10 10.0 1.00 10.0 1.00 1.00 0.50 negligible

5.3.2 RQ 2. (Efficiency)
Table 6 shows the average number of generations (including the (first) random initialisation) for both approaches as well as the
mean total time spend and the average time per generation. Additionally the Chain Time column, shows the average percentage
of time that was spend running the tests on our blockchain implementation (as opposed to evaluating- and generating new test
cases). Interestingly, on average both approaches are more or less equally fast: with DYNAMOSA taking 45.5 generations on
average compared to 52.4 generations for the fuzzer and 5, 683 seconds to 5, 984 seconds for the fuzzer. This is surprising
because the DYNAMOSA algorithm follows the additional selection, crossover and mutation steps described in Section 4. One
possible explanation for this is the preference criterion 2, which guides the search towards smaller test cases. Smaller test cases,
in turn, take up less time; especially since Table 6 shows that most of the time in our experiments was used running the test
cases on the blockchain. In order to properly compare the results for the two implementations we performed Wilcoxon tests and
Vargha-Delany tests comparing the distributions of average run times for the smart contracts for each approach, the results of
which are shown in the final 3 columns of Table 6.
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TABLE 5 Frequency of full branch coverage for the two approaches.
Name Full Cov. Gen. Full Cov. Fuz.
AddressBook 10 10
BadAuction 10 10
BasicToken 10 10
DosAuction 10 10
EIP20StandardToken 10 10
EasyPayAndWithDraw 10 -
EzToken 10 10
FixedSupplyToken 7 10
FundRaising 10 10
Greeter 10 10
Greeter2 10 10
Greeter3 10 10
GuardCheck 10 10
GuessTheNumberChallenge 10 10
LotteryMultipleWinners 7 2
MultiSigWallet (1) 1 -
MyAdvancedToken 10 10
PermissionGroups 8 -
Prover 10 10
SecureAuction 10 10
VulnerableTwoStep 10 10

There are ten smart contracts for which DYNAMOSA significantly (p ≤ 0.05) outperformed the fuzzer (9 with large and 1
medium effect size). The faster performance for “EasyPayAndWithDraw” and “PermissionGroups” can be attributed to the fact
that for these smart contracts the genetic approach manages to regularly achieve branch coverage before the budget is consumed,
whereas the fuzzer does not. For the other smart contracts we speculate that the preference criterion (2) in DYNAMOSA,
which guides the search to smaller test cases, saves time when running the tests in the blockchain environment and evaluating
their performance as described in sections 4.2.3 through 4.2.5. There are seven smart contracts for which the fuzzing approach
significantly outperformed the genetic search (each with large effect size). For each of these, we see that the fuzzer, spends
a smaller percentage off time off-chain compared to DYNAMOSA. This makes as the fuzzer bypasses the (computationally
intensive) selection, crossover and mutation steps described in Section 4.2.2.
DYNAMOSA was significantly faster than the fuzzing algorithm on ten smart contracts, whereas the opposite
happened seven times.

5.3.3 RQ 3. Test Case Length
Table 7 shows the average test case length (in number of statements) for the final solution presented by both the genetic algorithm
and the fuzzing algorithm. This solution is an archive, which stores for each branch to be covered, the shortest test case that
covers it. Even though the creators of DYNAMOSA cite the use of a preference criterion as a means for reducing the size of
the test cases in the final test suite, in this experiment implementing an archive resulted in fairly similar results, at first glance,
compared to DYNAMOSA averaging 4.96 statements and the fuzzer averaging 5.03 statements.
To better compare the results of the two approaches a Wilcoxon test and a Vargha-Delany test were performed comparing the

distributions of the average test case lengths of the final test suites for each smart contract. DYNAMOSA produced significantly
shorter (p ≤ 0.05 test cases for five smart contracts (four with large effect size and one with medium effect size), each of which it
was also significantly faster for as shown in Table 6. This supports the theory that the smaller test cases found by the guided search
can lead to an increase in efficiency when compared to a random search. The fuzzing approach yielded significantly smaller
test cases in the final test suite for 4 smart contracts. For the “EasyPayAndWithDraw” smart contract this can be explained by
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TABLE 6 Comparison for the time spend on creating tests for the genetic search algorithm and the fuzzing algorithm.

Name Generations Time/Generation Total Time (s) Chain Time (%) p-value Â12 Effect SizeGen. Fuz. Gen. Fuz. Gen. Fuz. Gen. Fuz.
AddressBook 3.50 1.90 122 277 428 527 0.72 0.71 0.28 0.40 small
BadAuction 1.00 1.00 85.9 86.5 85.9 86.5 0.84 0.84 0.96 0.5 negligible
BasicToken 1.00 1.00 92.7 95.2 92.7 95.2 0.76 0.77 0.39 0.39 small
Casino 101 101 80.3 133 8115 13432 0.82 0.82 0.01 0.00 large
DosAuction 1.00 1.00 69.2 70.9 69.2 70.9 0.85 0.85 0.58 0.43 negligible
EIP20StandardToken 1.00 1.00 1001 110 101 110 0.76 0.75 0.01 0.18 large
EasyPayAndWithDraw 3.50 101 122 78.1 425 7888 0.84 0.86 0.01 0.00 large
EtherBank 101 101 67.8 19.5 6848 1970 0.84 0.88 0.01 1.00 large
EzToken 1.00 1.00 137 146 137 146 0.72 0.73 0.05 0.21 large
FixedSupplyToken 34.7 4.10 79.5 172 2758 704 0.79 0.77 0.33 0.60 small
FundRaising 1.00 1.00 81.1 79.7 81.1 79.7 0.77 0.77 0.80 0.52 negligible
Gift_1_ETH 101 101 66.4 93.1 67078 9399 0.83 0.82 0.01 0.00 large
Greeter 2.70 1.30 172 162 463 210 0.70 0.69 0.33 0.63 small
Greeter2 1.00 1.20 183 182 183 218 0.68 0.69 0.03 0.28 medium
Greeter3 2.10 1.60 172 250 361 400 0.71 0.68 0.28 0.20 large
GuardCheck 1.00 1.00 86.2 74.0 86.2 74.0 0.82 0.83 0.02 0.75 large
GuessTheNumberChallenge 1.90 1.30 52.3 35.5 99.5 46.2 0.84 0.75 0.33 0.23 large
IdentityManager 101 101 141 113 14196 11430 0.73 0.76 0.09 0.70 medium
LotteryFor10 101 101 149 113 15039 11389 0.73 0.79 0.01 1.00 large
LotteryMultipleWinners 65.9 91.7 174 95.1 11472 8721 0.76 0.79 0.28 0.72 medium
MultiSigWallet (1) 97.9 101 149 96.8 14600 9778 0.75 0.78 0.01 1.00 large
MultiSigWallet (2) 101 101 190 96.6 19210 9760 0.74 0.79 0.01 1.00 large
MyAdvancedToken 1.00 1.00 135 139 135 139 0.71 0.71 0.72 0.39 small
OpenAddressLottery 101 101 245 101 24729 10159 0.79 0.81 0.01 1.00 large
PermissionGroups 66.7 101 132 157 8827 15878 0.74 0.78 0.01 0.10 large
Prover 1.00 1.00 200 193 200 193 0.71 0.69 0.28 0.62 small
Randomness 101 101 86.3 86.5 8720 8740 0.82 0.83 0.80 0.51 negligible
Reentrance 101 101 59.6 93.0 6022 9391 0.84 0.83 0.01 0.00 large
Rubixi 101 101 53.4 121 5393 12257 0.70 0.71 0.01 0.00 large
SecureAuction 1.00 1.00 90.3 87.0 90.3 87.0 0.81 0.81 0.09 0.63 small
TestDateTime 101 101 211 345 21276 34882 0.62 0.62 0.01 0.11 large
theRun 101 101 104 91.8 10538 9269 0.75 0.80 0.03 0.79 large
VulnerableTwoStep 1.00 1.00 71.3 73 71.3 72.6 0.84 0.83 0.65 0.48 negligible
Mean 45.5 49.4 120 123 5683 5984 0.77 0.77 - - -

the guided search, which achieves full branch coverage fairly quickly, whereas the fuzzer consumes the full budget and thus has
many more opportunities to generate smaller test cases. For the other smart contracts (two with large effect size and one with
medium effect size) the improvement is very minor: ranging from 0.15 to 0.42 statements on average. If instead we look only
at those smart contracts for which the fuzzing approach and the genetic approach complete in the same number of generations
the average test case length for DYNAMOSA becomes 3.70 statements and the average test case length for the Fuzzer becomes
3.96 which is slightly bigger.
The genetic algorithm (i.e., DYNAMOSA) produced significantly smaller test cases in the final test suites when
compared to the fuzzing algorithm for five smart contracts. The fuzzing algorithm produced significantly shorter
test cases in the final test suites when compared to DYNAMOSA for 3 smart contracts.

6 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our experiment.
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TABLE 7 Comparison between the average test case length for the genetic search algorithm and the fuzzing algorithm.
Name Gen. Fuz p-value Â12 Effect Size
AddressBook 9.39 10.1 0.39 0.44 negligible
BadAuction 2.94 3.09 0.34 0.45 negligible
BasicToken 3.67 3.54 0.61 0.50 negligible
Casino 5.88 9.1 0 0.01 0.10 large
DosAuction 3.66 3.79 0.84 0.46 negligible
EIP20StandardToken 5.71 5.89 0.58 0.42 small
EasyPayAndWithDraw 8.1 2.0 0.01 1.00 large
EtherBank 2.37 2.66 0.04 0.12 large
EzToken 4.47 4.66 0.61 0.41 small
FixedSupplyToken 4.15 4.85 0.28 0.41 small
FundRaising 6.55 6.61 0.88 0.48 negligible
Gift_1_ETH 2.02 2.01 0.32 0.60 small
Greeter 7.62 7.51 0.96 0.52 negligible
Greeter2 7.01 7.34 0.72 0.44 negligible
Greeter3 8.22 9.16 0.09 0.26 large
GuardCheck 4.46 4.71 0.44 0.40 small
GuessTheNumberChallenge 14.46 13.69 0.54 0.50 negligible
IdentityManager 3.44 3.24 0.44 0.44 negligible
LotteryFor10 4.49 4.46 0.72 0.48 negligible
LotteryMultipleWinners 8.33 7.15 0.07 0.71 medium
MultiSigWallet (1) 3.88 6.59 0.01 0.10 large
MultiSigWallet (2) 3.85 6.81 0.01 0.07 large
MyAdvancedToken 2.70 2.93 0.51 0.42 small
OpenAddressLottery 2.51 2.09 0.02 0.80 large
PermissionGroups 7.16 6.61 0.44 0.58 small
Prover 4.41 4.42 0.57 0.56 negligible
Randomness 2.46 2.58 0.07 0.28 medium
Reentrance 2.15 2.0 0.05 0.70 medium
Rubixi 3.73 3.52 0.58 0.50 negligible
SecureAuction 3.87 3.58 0.24 0.65 small
TestDateTime 2.42 2.14 0.01 0.97 large
theRun 2.1 2.17 0.05 0.32 medium
VulnerableTwoStep 5.33 5.15 0.80 0.52 negligible
Mean 4.96 5.03

Construct Validity.We demonstrated that transaction properties, blockchain properties, and interactive properties are present
in some of the most popular Solidity smart contracts on Github. Additionally, we showed the effectiveness and efficiency of
AGSOLT by comparing a search-based test approach with a random testing one in terms of branch coverage, execution time,
and test case length. Both approaches were implemented in the same tool (i.e., AGSOLT) and executed on the same hardware
environment to make the comparison as fair as possible. We acknowledge that implementation issues could negatively impact
the final results. However, please consider that we strictly followed the definition of the algorithm provided by Panichella et
al. [12] and that our implementation is publicly available to allow other researchers to replicate our study.
Internal Validity. All the experiments were executed ten times to address the inherent randomness of both approaches. Fine-

tuning the parameters of the DynaMOSA algorithm [12] could also have affected the internal validity of the experiments; since
setting these parameters is challenging [47], we used the default values suggested by the creators of the algorithm [12].
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External Validity. We tested AGSOLT on a set of real-world smart contracts from a wide variety of developers. We also
ensured that each basic variable type and arrays in Solidity were included in the data set. Despite exhibiting each of the proper-
ties that are indicative of the identified blockchain-specific challenges it is still possible that our data set is not representative of
Solidity smart contracts in general and in general our results depend on the assumption that this data set is representative. Future
experimentation with a larger data set is desirable. AGSOLT cannot yet handle user-defined input variable types nor smart con-
tracts that rely on previously deployed smart contracts for their initialization. Adding this feature is part of our research agenda.
Our conclusions are derived from the results obtained only on one genetic algorithm, namely DynaMOSA [12]. Our research
agenda includes experimentationwith a broader set of search algorithms.We did not run the test cases in a distributed blockchain,
but we relied on GANACHE, a framework to run tests, execute commands, and inspect smart contracts. However, please consider
that the resulting test suites are presented conveniently and can be easily used in any test network (e.g., Ropstein13).
Conclusion Validity. The results were obtained by repeating the experiments enough times and adopting appropriate statis-

tical tests to draw valid conclusions. Specifically, we used the Wilcoxon test [48] to test the significance of the differences and
the Vargha-Delaney statistic [49] to estimate the effect size of the observed differences.

7 CONCLUSION

This paper discussed the challenges that arise when applying automated test case generation in a blockchain environment,
identifying three different categories: transaction properties, blockchain properties and interactive properties. We presented,
explored and partially validated AGSOLT, a tool that addresses these challenges and creates test suites that aim to achieve branch
coverage for Solidity smart contract unit testing.
AGSOLT works with both a random testing approach (i.e., a fuzzer) and a guided-search approach (i.e., the DYNAMOSA

genetic algorithm [12]). We gathered a data set consisting of real-world smart contracts from GitHub. We demonstrated that
many of these contracts exhibit behaviors that align with the challenges we identified. Additionally, we have shown the effec-
tiveness and efficiency of AGSOLT by achieving good branch coverage with both approaches. In doing so we presented the first
comparison between a guided search and a random search in the domain of automated test case generation for smart contracts.
We found that the DYNAMOSA algorithm outperformed our fuzzer for achieving branch coverage, but ascertained that neither
approach is significantly faster or produces significantly smaller test cases for the final test suite. The fact that the fuzzer was not
faster, despite not going through the extra steps of selection, cross-over and mutation, is interesting and deserves further inves-
tigation. We hypothesize that this could be due to the preference criterion of DYNAMOSA, which should, in theory, result in
less time spent on the execution and evaluation steps of the testing procedure. Finally, remarkably, we have shown that three of
the most prevalent smart contracts on Github, suffer from critical failures (crashes) that emerged during our tests, demonstrating
the potential real-world value of AGSOLT.
In our future agenda, we plan to extend our current baseline a larger set of commercial smart contracts. Moreover we intend

to leverage the parameterization of our testing approach with more search algorithms, e.g., the neural machine transaltion-based
approach of Tufano et. al. [50]. Additionally, we will expand AGSOLT to test inter-contract dependencies with the final goal of
creating test cases in blockchain environments when multiple smart contracts interact.
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